User's Manual ### **CONTENTS** | 1. General instructions | 1 | |---|----| | 1.1 Panel Description | 1 | | 1.2 Inspection | 3 | | 1.3 Accessories | 3 | | 2. Safety Instructions | 3 | | 3. Description | 3 | | 3.1 Definition Description | 3 | | 3.2 Impedance Parameter Description | 4 | | 3.3 Series-parallel Connection Mode Description . | 4 | | 4. Functional Characteristics Description | 5 | | 5. Meter Probe Measurement | 9 | | 6. Measurement Operation Description | 11 | | 6.1 Automatic Measurement | 11 | | 6.2 Single Measurement | 11 | | 6.3 Comparison and Selection | 11 | | 6.4 Deviation Proportion Measurement | 12 | | 6.5 Data Hold Function | 12 | # **Auto Range LCR Meter** ### **CONTENTS** | 7. Additional Functions | 12 | |---|----| | 7.1 Auto Power Off Function | 12 | | 7.2 Backlight Function | 12 | | 7.3 Battery Power Detection Function | 13 | | 8. Upper Computer Software Installation | 13 | | 9. Data Transmission | 17 | #### 1. General Instructions Thank you for purchasing this LCR digital bridge meter. It is a professional instrument for measuring inductance, capacitance and resistance. It has many features, such as automatic identification, automatic measurement range, high measurement accuracy and speed, wide measuring range and so on. An ordinary multimeter only provides DC mode for resistance measurement, while this meter provides both AC and DC measurement modes. A variety of test frequencies up to 100Khz can be provided for inductance, capacitance and resistance in AC mode to meet the actual needs better. Correct usage can ensure that the instrument will work precisely for a long time. Please read the instructions carefully before using and operate the instrument strictly in accordance with the instructions. #### 1.1 Panel Description - 1 Display - 2 Functional buttons area - 3 Power switch - 4 IR Port - 5 External power port - 6 Calibration button port - 7 DUT + jack - 8 DUT jack - 9 Shielding grounding jack ## **Auto Range LCR Meter** Panel 01 ### 1.2 Inspection When you get a new LCR meter, please check the instrument and its accessories. If something is damaged or missed, please contact the store you bought the instrument from for adjustment or replacement. #### 1.3 Accessories LCR digital bridge meter Kelvin test clip (one pair) SMD test probe IR data line Upper computer program C External power supply ### 2. Safety Instructions Operating environment and condition: • Elevation < 2000 m • Relative humidity (RH) ≤ 80%RH Operating temperature 0-40°C **Note**: Do not input voltage at the measurement port. When measuring capacitance, please discharge first then measure, otherwise, the meter will be damaged. Storage and maintenance: Do not use alcohol or other solvents to clean the meter. If it will not be used for long time, please remove battery and put the meter in a dry and clean environment. #### 3. Description #### 3.1 Definition Description APO: Auto power off LCR: This character showing on the LCD means that the tester works in automatic identification mode LP: Inductanceparallelconnectionmeasurementmode Ls: Inductance series connection measurement mode **CP**: Capacitance parallel connection measurement mode ## **Auto Range LCR Meter** Cs: Capacitance series connection measurement mode Rp: Resistance parallel connection measurement mode Rs: Resistance series connection measurement mode DCR: Resistance DC measurement mode **D**: Wastage factor **Q**: Quality factor 9: Phase angle value **ESR**: Equivalent resistance **DUT**: Object for measuring ### 3.2 Impedance Parameter Description (see Figure $\ \ I$) $Z = R_S + jX_S = |Z| \angle \theta \quad R_{S^-} = |Z| Cos \theta \quad X_S = |Z| Sin \theta$ $X_S/R_S=Tan\theta$ $\theta=Tan-1(X_S/R_S)$ If θ > 0, it means that the measured object is resistant, if θ < 0, it means that that the measured object is capacitive. #### 3.3 Series-parallel Connection Mode Description This meter has series and parallel measurement modes. When the capacitance value of the measured object is large or inductance value is small, use the series mode for more accurate results. When the capacitance value of the measured object is small or inductance value is large, use the parallel mode for more accurate results. This meter can select the measurement mode automatically according to the measured object. ### 4. Functional Characteristics Description - 1. 19,999 (main)/1,999 (secondary) dual LCD display - 2. LCR measures with automatic identification and automatic measurement range - 3. L\C\R single measurement selection - 4. Resistance measurement in DCR mode - 5. D/Q/θ/ESR display on the secondary display - 6. Series or parallel measurement modes are selectable - 7. Comparison function under single measurement - 8. Test frequency 100/120/1k/10k/100k is selectable in AC mode - 9. The selection feature for measured components with the same series - 10. Battery power display, auto power off if meter is not operated for 5 minutes. - 11. With infrared transmission interface, the meter is secure (supporting hot plug). With special software, the meter is easily managed. - 12. See table 1-3 for measurement accuracy and scope **Remarks:** This accuracy is the measurement standard. In DUT jack, the meter-specific probe should be used if required. Measurement with probe may be influenced by external environment. To avoid inaccurate measurements, please keep away from strong magnetic sources. ## **Auto Range LCR Meter** Table 1 Resistance measurement scope | Measurement | Measuring
Frequency | Range | Resolution | Accuracy | |-------------|------------------------|----------|------------|----------| | | 100Hz/120 | 200.00Ω | 0.01Ω | 1.0%+5d | | | 100Hz/120 | 2.0000kΩ | 0.1Ω | 0.3%+5d | | | 100Hz/120 | 20.000kΩ | 1Ω | 0.3%+5d | | | 100Hz/120 | 200.00kΩ | 0.01kΩ | 0.5%+5d | | | 100Hz/120 | 2.0000ΜΩ | 0.1kΩ | 1.0%+5d | | | 100Hz/120 | 20.000ΜΩ | 1kΩ | 1.0%+5d | | | 100Hz/120 | 200.00ΜΩ | 0.1ΜΩ | 2.0%+5d | | | 1kHz | 20.000Ω | 0.001Ω | 1.0%+5d | | | 1kHz | 200.00Ω | 0.01Ω | 0.3%+5d | | | 1kHz | 2.0000kΩ | 0.1Ω | 0.3%+5d | | | 1kHz | 20.000kΩ | 1Ω | 0.3%+5d | | Rs/Rp | 1kHz | 200.00kΩ | 0.01kΩ | 0.5%+5d | | 13/14 | 1kHz | 2.0000ΜΩ | 0.1kΩ | 1.0%+5d | | | 1kHz | 20.000ΜΩ | 1kΩ | 2.0%+5d | | | 1kHz | 200.00ΜΩ | 0.1ΜΩ | 5.0%+5d | | | 10kHz | 20.000Ω | 0.001Ω | 1.0%+5d | | | 10kHz | 200.00Ω | 0.01Ω | 0.5%+5d | | | 10kHz | 2.0000kΩ | 0.1Ω | 0.3%+5d | | | 10kHz | 20.000kΩ | 1Ω | 0.5%+5d | | | 10kHz | 200.00kΩ | 0.01kΩ | 1.0%+5d | | | 100kHz | 20.000Ω | 0.001Ω | 1.0%+5d | | | 100kHz | 200.00Ω | 0.01Ω | 1.0%+5d | | | 100kHz | 2.0000kΩ | 0.1Ω | 1.0%+5d | | | 100kHz | 20.000kΩ | 1Ω | 2.0%+5d | **Note:** This accuracy is the measurement standard when D <0.1, if D> 0.1, it should be multiplied by the extraction of a root of $1 + D^2$. Table 2 Capacitance measurement scope | Measurement | Measuring
Frequency | Range | Resolution | Accuracy | |-------------|------------------------|----------|------------|----------| | | 100Hz/120 | 20.000nF | 1pF | 1.0%+5d | | | 100Hz/120 | 200.00nF | 0.01nF | 0.5%+5d | | | 100Hz/120 | 2000.0nF | 0.1nF | 0.5%+5d | | | 100Hz/120 | 20.000uF | 1nF | 0.5%+5d | | | 100Hz/120 | 200.00uF | 0.01uF | 1.0%+5d | | | 100Hz/120 | 2000.0uF | 0.1uF | 2.0%+5d | | | 100Hz/120 | 20.000mF | 0.1mF | 2.0%+5d | | | 1kHz | 2000.0pF | 0.1pF | 1.0%+5d | | | 1kHz | 20.000nF | 1pF | 1.0%+5d | | Cs/Cp | 1kHz | 200.00nF | 0.01nF | 0.5%+5d | | | 1kHz | 2000.0nF | 0.1nF | 0.5%+5d | | | 1kHz | 20.000uF | 1nF | 0.5%+5d | | | 1kHz | 200.00uF | 0.01uF | 1.0%+5d | | | 1kHz | 2000.0uF | 0.1uF | 1.0%+5d | | | 10kHz | 200.00pF | 0.01pF | 1.0%+5d | | | 10kHz | 2000.0pF | 0.1pF | 1.0%+5d | | | 10kHz | 20.000uF | 1pF | 1.0%+5d | | | 10kHz | 200.00uF | 0.01nF | 1.5%+5d | | | 10kHz | 2000.0uF | 0.1nF | 2.0%+5d | | | 100kHz | 200.00pF | 0.01pF | 2.0%+5d | | | 100kHz | 2000.0pF | 0.1pF | 1.0%+5d | | | 100kHz | 20.000nF | 1pF | 2.0%+5d | | | 100kHz | 200.00nF | 0.01nF | 5.0%+5d | **Note:** This accuracy is the measurement standard when D <0.1, if D> 0.1, it should be multiplied by the extraction of a root of $1 + D^2$. # **Auto Range LCR Meter** Table 3 Inductance measurement scope | Measurement | Measuring
Frequency | Range | Resolution | Accuracy | |-------------|------------------------|----------|------------|----------| | | 100Hz/120 | 20.000mH | 1uH | 1.0%+5d | | | 100Hz/120 | 200.00mH | 0.01mH | 0.5%+5d | | | 100Hz/120 | 2000.0mH | 0.1mH | 0.5%+5d | | | 100Hz/120 | 20.000H | 1mH | 0.5%+5d | | | 100Hz/120 | 200.00H | 0.01H | 1.0%+5d | | | 100Hz/120 | 2000.0H | 0.1H | 1.0%+5d | | | 100Hz/120 | 20.000kH | 1H | 2.0%+5d | | | 1kHz | 2000.0uH | 0.1uH | 1.0%+5d | | | 1kHz | 20.000mH | 1uH | 0.5%+5d | | | 1kHz | 200.00mH | 0.01mH | 0.5%+5d | | | 1kHz | 2000.0mH | 0.1mH | 1.0%+5d | | Ls/Lp | 1kHz | 20.000H | 1mH | 1.0%+5d | | LS/LP | 1kHz | 200.00H | 0.01H | 2.0%+5d | | | 1kHz | 2000.0H | 0.1H | 5.0%+5d | | | 10kHz | 200.00uH | 0.01uH | 1.0%+5d | | | 10kHz | 2000.0uH | 0.1uH | 0.5%+5d | | | 10kHz | 20.000mH | 1uH | 0.5%+5d | | | 10kHz | 200.00mH | 0.01mH | 1.5%+5d | | | 10kHz | 2000.0mH | 0.1mH | 2.0%+5d | | | 10kHz | 20.000H | 0.001H | 5.0%+5d | | | 100kHz | 20.000uH | 0.001uH | 1.0%+5d | | | 100kHz | 200.00uH | 0.01uH | 2.0%+5d | | | 100kHz | 2000.0uH | 0.1uH | 2.0%+5d | | | 100kHz | 20.000mH | 1uH | 2.0%+5d | | | 100kHz | 200.00mH | 0.01mH | 5.0%+5d | **Note:** This accuracy is the measurement standard when D <0.1, if D> 0.1, it should be multiplied by the extraction of a root of $1 + D^2$. #### 5. Meter Probe Measurement Use Kelvin clip or SMD clamp to connect according to the following diagram: Schematic diagram for using SMD clamp to measure **Remarks:** insert the plug correctly according to the diagram. Measurement can't be done if inserted incorrectly # **Auto Range LCR Meter** Schematic diagram for using Kelvin clip to measure **Remarks:** insert the plug correctly according to the diagram. Measurement can't be done if inserted incorrectly 09 ### 6. Measurement Operation Description #### 6.1 Automatic Measurement When the instrument is turned on, the instrument will enter automatic identification mode by default. At this time, insert the object to be measured to the measurement side. The instrument will automatically recognize that the object to be measured is capacitive resistance or inductor and display the measurement value in the main display, and display a corresponding $D/Q/\theta/v$ alue in the secondary display. In this mode, you can change measurement frequency by operating **Frequency** button. #### 6.2 Single Measurement When the instrument is turned on, the instrument will enter automatic identification mode by default. At this time, you can select L, C, R, DCR and other single measurement modes by operating **Function** button. Read the measurement value on the LCD display after inserting the object to be measured and selecting the proper mode. In L, C, R mode, you can change the measurement frequency by operating **Frequency** button, and you also can operate **Series/Parallel** buttons to select parallel connection measurement or series connection measurement #### 6.3 Comparison and Selection When the instrument is turned on, the instrument will be switched to single measurement mode for the objects to be selected. Connect the sample objects to be selected at measurement port. At this time, you can operate **Comparison** button to enter comparison and selection mode. PASS or FAIL, will display on the main display and the measurement value of current object will display on the secondary display. In this state, press **Setup** button to select parameters, and the sample value and error will display on the LCD. You can modify sample value and error by operating direction arrows. Select the ## **Auto Range LCR Meter** modification item by operating Ok button, and confirm the settings. Press **Comparison** button again to quit selection mode. #### 6.4 Deviation Proportion Measurement When the instrument is turned on, the instrument will switch to single measurement mode for the objects to be tested. Insert reference object in measurement port, press **Relevant Measurement** button to save the current vale (DCUR) as reference value (DREF). At this time, **REL** will display on the LCD. Insert the object for measuring in the measurement port and press **Relevant Measurement** button again. At this time, **REL** will flash on the LCD the reference value will display on the main display, and the deviation proportion REL% will display on the secondary display, REL%=(DCUR-DREF)/ĎREF*100%. When DCUR is more than two times of DREF, OL% will display on the secondary display. Press **Relevant Measurement** button for more than 2 seconds to quit the measurement state. **6.5 Data Hold Function:** press **Hold** button to stop reading measurement value and show the current measurement value on the main display continuously. At this time, only **Communication** and **Backlight** keys are available. Press the **Hold** key again to return normal measurement mode. #### 7. Additional Functions **7.1 Auto Power Off Function:** To prolong battery life, when the external power supply is not used, APO will display on the LCD, which means that auto power off is available. The instrument will automatically power off without any operation for 5 minutes. **7.2 Backlight Function:** backlight will be enabled when you press **Backlight** button. Press **Backlight** button again to turn off the backlight. The backlight will turn off automatically after it is on for 60 seconds. **7.3 Battery Power Detection Function:** The meter has a battery power detection function. Battery power includes four levels and displays on the LCD screen. When "[]" displays for battery, please replace battery. This meter uses 8 × 1.5V Size AA battery. Batteries with the same model should be used for battery replacement. Please remember that you can't use the meter until the rear cover is tightened. ## 8. Upper Computer Software Installation ### Open CD Click LCR_TERSTER.MSI to enter the following screen based on the diagram. ## **Auto Range LCR Meter** #### Click NEXT to enter the next screen ### Click change to select the position to be changed #### Click OK to enter the next screen based on the diagram #### **Click NEXT** ## **Auto Range LCR Meter** #### Click INSTALL and start installing Click finish, and the following icon will show on the desk #### Installation complete #### 9. Data Transmission Press **Communication** button. The RS232 symbol will show on the LCD display. At this time, you can send data via infrared port. Connect the infrared communication line between computer and LCR Meter. When the software is opened on the computer, the screen is shown as following Screen I. Click CONNECT in the screen, the screen will be shown as following Screen II, and start receiving data. The number of data recording groups can be up to 50000. Click the storage mark on the screen to save the recordings in the format of EXCEL or text. # **Auto Range LCR Meter** Screen I Screen II 17